Evolution Equations with Sectorial Operator on Fractional Power Scales
نویسندگان
چکیده
Abstract Originating with the famous monograph by Dan Henry, semigroup approach to evolution problems having a positive sectorial operator in main part allows us settle them at various levels of fractional power scale associated linear operator. This translates into different regularity properties local solutions such equations. Specific applications abstract results 2D surface quasi-geostrophic equation or chemotaxis system are presented.
منابع مشابه
On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملStochastic evolution equations with fractional Brownian motion
In this paper linear stochastic evolution equations driven by infinite-dimensional fractional Brownian motion are studied. A necessary and sufficient condition for the existence and uniqueness of the solution is established and the spatial regularity of the solution is analyzed; separate proofs are required for the cases of Hurst parameter above and below 1/2. The particular case of the Laplaci...
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملEigenvalue of Fractional Differential Equations with p-Laplacian Operator
Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...
متن کاملFractional Evolution Equations and Applications
In recent years increasing interests and considerable researches have been given to the fractional differential equations both in time and space variables. These are due to the applications of the fractional differential operators to problems in a wide areas of physics and engineering science and a rapid development of the corresponding theory. Motivating examples include the so-called continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Optimization
سال: 2023
ISSN: ['0095-4616', '1432-0606']
DOI: https://doi.org/10.1007/s00245-023-10019-z